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An efficient way to study the QCD phase diagram at small finite density is to extrapolate ther-

modynamical observables from imaginary chemical potential. The phase diagram features a

crossover line starting from the transition temperature already determined at zero chemical poten-

tial. In this talk we focus on the curvature of this line at mu = 0. We present the extrapolation of

the crossover temperature based on three observables at several lattice spacings. The simulations

were performed at zero and at moderate values of the imaginary chemical potential, always in the

strangeness neutral point. We used the Symanzik-improved gauge action with four times stout

smeared staggered fermions.
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The curvature of the crossover line in the (T, mu)-phase diagram of QCD Jana Günther

1. Introduction

Since we cannot determine the crossover temperature at real finite µB with direct lattice sim-

ulations, we determine the curvature at µB = 0 and extrapolate the crossover temperature to finite

µB. A parametrisation that respects respects symmetry under charge conjugation at µB = 0 is

Tc(µB)

Tc(0)
= 1−κ

(

µB

Tc(µB)

)2

+O(µ4
B). (1.1)

There are two main methods to determine κ: The Taylor expansion method as in [1, 2] or the

method of analytic continuation [3, 4, 5, 6]. In this work we will present continuum extrapolated

results from 403 × 10, 483 × 12 and 643 × 16 lattices with the method of analytic continuation as

well as a comparison to the Taylor expansion on 403 ×10 lattices.

In this proceedings we can only give a brief introduction with a summary of the most resent

results. For a more detailed overview please see [7] and references therein.

2. Simulation details

We use a tree-level Symanzik improved gauge action, with four times stout smeared (ρ =

0.125) staggered fermions. We simulate 2+ 1+ 1 dynamical quarks where the light flavors are

tuned in a way to reproduce the physical pion and kaon mass and we set mc

ms
= 11.85 [8]. For the

zero temperature runs we use large volumes which full fill Lmπ > 4. The scale is determined by

using fπ ans w0 as two alternative methods for scale setting. More Details can be found in [7].

The maximal useful value of mB is mB = iπT because of the Roberge-Weiss transition [9].

We simulate at six different values of mB given as: µ
( j)
B = iT

jπ
8

for j ∈ {0,1,2,3,4,5,6}. The

simulations as µB = 0 are used to obtain a “baseline” for the shift in the transition at imaginary

µB and to do a Taylor expansion in one observable to compare it with the method of analytic

continuation. The data at j = 1,2,6 is not used for the calculation of κ . At j = 1,2 it is only used

to tune the simulations to the strangeness neutral point (see section 3) and at j = 6 it is used to

estimate the uncertainties in 3.

We performed simulations on 323 × 8, 403 × 10, 483 × 12 and 643 × 16 lattices, at sixteen

temperatures in the temperature range 135. . . 210 MeV. We have generated between 10000-15000

Hybrid Monte Carlo updates, analyzing every 5th of them (every 10th for Nt = 16). The configura-

tions have been evaluated for up to fourth order generalized quark number susceptibilities [7] and

for the chiral condensate and susceptibility. For µB = 0 we have 5 . . . 10 times more statistics. This

ensures a solid guidance to the fitting procedure.

3. Strangeness neutrality

The interpretation of µB varies between different references. In [10] simulations are performed

at µu = µd = µs =
µB

3
. On the other hand [3] looks at two different possibilities: µu = µd = µs =

µB

3

as well as µu = µd =
µB

3
and µs = 0. In this work we want to choose our simulations by the situation

realised in experiment. Since the nuclei used for heavy ion collisions do not contain strange quarks
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The curvature of the crossover line in the (T, mu)-phase diagram of QCD Jana Günther

we want to simulate with 〈nS〉= 0 for each µB. To avoid heavy tuning we will describe a procedure

we used to solve the equation

〈nS〉= 0 ⇔
∂ logZ

∂ µS

= 0. (3.1)

Our aim is to determine µS in a way that 〈nS〉 = 0 for a given µB. In the following the index of χ

will imply the derivative of the partition sum with respect to a chemical potential. For example

χBQS =−
1

T 4

∂ 3

∂ (µB/T )∂ (µQ/T )∂ (µS/T )

T

V
logZ.

Assuming we know the value for µS(µB) so that 〈ns〉= 0 for µS(µ
0
B) and µS(µ

0
B−∆µB) as well

as the derivative
dµS

dµB
(µ0

B) with infinite precession. We can then calculate the correct value for µS at

µ0
B +∆µB by a simple Runge-Kutta step:

µS(µ
0
B +∆µB) = µS(µ

0
B −∆µB)+2∆µB

dµS

dµB

(µ0
B).

In the simulations with µ0
B and µ0

B −∆µB, µS might not precisely tuned and we will never reach

infinite precession. Therefore we will extrapolate to a corrected value, so that errors made in

previous steps will not accumulate. We assume that the correct value of µS is µ̃S = µ ′
S +∆µ ′

S. By a

Taylor expansion we get:

〈nS〉=
∂ logZ

∂ µ̃S

=
∂ logZ

∂ µ ′
S

+
∂ 2 logZ

∂ µ ′2
S

∆µ ′
S = 0

This yields ∆µ ′
S =− χSB

χSS
. This result we can now use to correct our previous values for µS(µ

0
B) and

µS(µ
0
B −∆µB). The derivative

dµS

dµB
(µ0

B) can be corrected in a similar way.

4. Analysis

A more detailed description of our analysis can be found in [7]. We analyse three different

observables. Further information concerning definition and renormalization can be found in [11].

The first observable is the chiral susceptibility, defined and renormelized by substracting the

zero temperature data as:

χψ̄ψ =
T

V

∂ 2 lnZ

∂ (mq)
2
, χr

ψ̄ψ =
(

χψ̄ψ(T,β )−χψ̄ψ(0,β )
) m2

l

m4
π

. (4.1)

The chiral susceptibility has the form of a peak that is shifted to higher temperatures with increasing

chemical potential. The shape of the peak varies only sightly with the chemical potential and this

variation can be described by a change of the hight and the width of the peak. This allows us to

fit the peaks for one lattice size but different chemical potentials simultaneously. This allows us to

determine the shape of the peak mostly by the data for µB = 0 which has the highest statistics (see

section 2). We are using two different ansatzes:

χr
ψ̄ψ(µ,T ) =

{

C+A2(µ)
(

1+W 2(µ)(T −Tc(µ))
2
)α/2

for T ≤ Tc

C+A2(µ)
(

1+b2W 2(µ)(T −Tc(µ))
2
)α/2

for T > Tc

(4.2)
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Figure 1: The chiral susceptibility for an 483 × 12 lattice after the rescaling of the date for finite chemical

potential.

and

χr
ψ̄ψ(µ,T ) =C+

A(µ)

1+W 2(µ)(T −Tc(µ))2 +a3W 3(µ)(T −Tc(µ))3
. (4.3)

For the zero temperature data (that is needed for the renormalization) we use to different function

for the interpolation:

χψ̄ψ(0,β ) =
6

∑
k=0

Akβ k and χψ̄ψ(0,β ) =
2

∑
k=−2

Akβ k. (4.4)

We choose the fit windows by selecting three different values for χr
ψ̄ψ and neglecting all data points

below that value. If we rescale the data for finite chemical potential appropriately they all lie on

top of the curve for µB = 0 as shown in figure 1 To account for the correlation of the different data

sets introduced by the subtraction of the zero temperature data we combine the fits for different

lattice sizes and for the zero temperature data in one large fit to avoid a large correlation matrix.

All fit parameters in equation 4.2 and 4.3 can be different for each lattice size. To determine κ we

use again two different methods. First we determine κ by doing a linear fit of
Tc((µB/Tc)

2)
Tc(0)

vs. µB/Tc

and extrapolate κ to the continuum. As a second method we do a combined µB and continuum fit.

Since the χ2 value for a continuum fit with all four lattice spacings was large we included only the

lattices 403 ×10, 483 ×12 and 643 ×16 in our final analysis. This leads to good values for χ2.

The other two observables are the chiral condensate

〈ψ̄ψ〉=
T

V

∂ lnZ

∂mq

, 〈ψ̄ψ〉r =−(〈ψ̄ψ〉(T,β )−〈ψ̄ψ〉(0,β ))
ml

m4
π

(4.5)

and the strange susceptibility χE
SS. Both have a step like form and we fit them with the ansatzes

〈ψ̄ψ〉r(µ,T ) = A(µ)(1+B tanh [C (T −Tc(µ))]+D(T −Tc(µ))) (4.6)

and

〈ψ̄ψ〉r(µ,T ) = A(µ)(1+Barctan [C (T −Tc(µ))]+D(T −Tc(µ))) . (4.7)
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The strange susceptibility has the advantage that it needs no renormalization. For the renormal-

ization of the chiral condensate we fit the zero temperature data with polynomials of order six or

seven. The rest of the analysis works analogously to the analysis of the chiral susceptibility.

To estimate the statistical error we combine the different analysis methods in a histogram and

use the central 68% of the histogram as an estimate of the systematic error. The statistical error is

obtained from 1000 bootstrap samples. We combine the two errors by quadrature in final combined

error. The resulting histograms can be seen on the left side of figure 2.

The histograms of the three quantities can be joined into a single one leading to our combined

result based on our three observables with strangeness neutrality:

κ = 0.0149±0.0021. (4.8)

Our simulations were done at 〈nS〉= 0 and 0.5〈B〉= 〈Q〉. To compare our results with experiments

it would be better to simulate at 〈nS〉= 0 and 0.4〈B〉= 〈Q〉. Therefore we extrapolated the strange

susceptibility to this point (χSS). As it can be seen on the left side of figure 2 the effect is negligible

within the errors.

In addition to using the method of analytic continuation we also used our µB = 0 data to

perform an analysis by doing a Taylor expansion. More details on this analysis can be found in [7].

The results can be found on the right side of figure 2.

Finally we use our results to extrapolate to finite real µB. To estimate the systematics and the

validity range of the extrapolation we fit
Tc((µB/Tc)

2)
Tc(0)

with the functions 1+ ax, 1+ ax+ bx2, 1+ax
1+bx

and 1
1+ax+bx2 . In these fits we include the data for j = 6 to have a better control over the second

order influences. The results for 〈ψ̄ψ〉 is shown in figure 3.

5. Conclusion

The present result indicates a stronger curvature than the one presented in Ref. [1]. There are,

however a couple differences between the definitions/ approaches of the curvature of the present

analysis and Ref. [1]. Note that the transition is a smooth cross-over, thus different definitions

obviously lead to different results.

In Ref. [1] we used a vanishing strangeness chemical potential. In the present analysis we use

instead vanishing strange density. The reason for this change is to be as close to the experimental

situation as possible. In heavy ion collisions the net strangeness is zero.

It is emphasized in the discussion of Figure 5 of [1] that only statistical uncertainties were

provided. The present analysis estimates systematic uncertainties coming from various aspects

of the analysis as discussed earlier. These are comparable to or in some cases even larger than

the statistical uncertainties. A similar assumption on the systematics of Ref. [1] would make the

tension between the results much weaker.
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Figure 2: Left: The continuum extrapolated results from the analytic continuation for the curvatrue κ

at µB = 0. Here χSS is at Z = 0.5A and χE
SS is extrapolated to Z = 0.4A. Both are extrapolated to the

strangeness neutral point. Right: The results obtained by Taylor expansion for µs = 0 (χ l
SS), µS = 0 (χb

SS)

and at the strangness neutral point (χE
SS) as well as χE

SS obtained from analytic continuation on a 403 × 10

lattice.

Figure 3: The extrapolation to finite chemical potential.
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